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Abstract. We develop a technique to utilize the Cole–Hopf transformation to solve an optimal
control problem for Burgers’ equation. While the Burgers’ equation is transformed into a simpler
linear equation, the performance index is transformed to a complicated rational expression. We show
that a simpler performance index, that retains the behavior of the original performance index near
optimal values of the functional, can be used.
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1. Introduction

Many engineering and physical applications use the Navier–Stokes equation for
modeling fluid flow. The complete system of equations is difficult to solve expli-
citly in most cases. Many approximation schemes have been suggested to solve
the Navier–Stokes equation. Burgers equation is the simplest approximation that
captures the nonlinear and non-planar aspects of the Navier–Stokes equation and
was originally proposed as a model for turbulence by J.M. Burgers. Further in-
vestigation showed that the Burgers model was not useful to describe some central
features of turbulence. However, Burgers equation retains some key features of the
Navier–Stokes equation and is an excellent model for the viscous structure of weak
shock waves. Kriess and Lorentz[2] give an existence theorem for Burgers’ equa-
tion. The viscous Burgers’ equation can be solved exactly using the Cole–Hopf
transformation, which is a Backlünd transformation between Burgers equation and
the linear heat equation. Ly, Mease and Titi[3] have obtained stability results for
the viscous Burgers’ equation with distributed and boundary control for a variety
of boundaries. They have removed restrictions on the size of initial data imposed
by previous results.

In this paper, we consider only distributed control and, specifically, a single ac-
tuator atx = xa. The method can be easily expanded to multiple actuators. First, we
convert the nonlinear Burgers’ equation to a linear diffusion type equation using the
Cole–Hopf transformation. However, the transformation converts the performance
index J [φ[v], v] into a very complicated expression given by (2.13). Traditional
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methods are inapplicable with this performance index. We can overcome this by in-
troducing a simpler performance indexC[φ[v], v], given by (3.17). Using calculus
of variations, we show in Section 3 that a minimum of performance index (3.17)
implies the minimum of performance index (2.13). In other words, the alternate
performance index preserves the integrity of the optimal control problem. Using
this justification, we re-formulate the optimal control problem to use the simpler
and newly defined performance index. In Section 4, we show the existence of the
optimal control using the maximum principle and derive an exact expression for the
optimal control. In Section 5, we discuss the conclusions and possible extensions
of the results obtained in this paper.

2. Statement of the Optimal Control Problem

Consider the following boundary and initial value problem.

yt − νyxx + yyx = f (t), (2.1)

B.C. y(0, t) = 0, y(1, t) = 0, (2.2)

I.C. y(x,0) = y0(x), (2.3)

where(x, t) ∈ [0,1]× [0, T ] andν is the viscosity parameter. The source function
f is an arbitrary function ofx and t . We wish to guide this system to produce
a desired responseyd(x) at a desired timeT . There are primarily two methods
to control the natural evolution ofy(x, t) and steer it towards the desired output
yd(x). The first method introduces control through the boundary while the second
method introduces time dependent actuators at finite number of special points in
the spatial domain. We will adopt the second method and introduce an actuatorv(t)

atx = xa.
We wish to obtain an expression for the controlv(t) that minimizes the per-

formance index

J [y[v], v] = 1

2

∫ 1

0

∫ T

0
(y(x, t; v(t)) − yd(x))2 dt dx + ε2

∫ T

0
v2(t) dt.

(2.4)

whereyd(x) is a specified target function at the terminal timeT and 0< ε �
1 is a known parameter. The first integral in (2.4) is the cumulative penalty of
mismatch of the state variabley(x, t) and the desired target functionyd(x). The
second integral is the contribution from introducing a control function during the
evolution of the state functionφ(x, t).

REMARK 1. We assume thatf ≡ 0. Through a change of variables,f (t) can be
incorporated into the state equation.

REMARK 2. To simplify the performance index further, we make a change of
variable given by

ỹ(x, t) = y(x, t) − yd(x).
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Incorporating all the assumptions and after rewritingỹ(x, t) asy(x, t), the op-
timal control problem can be stated as follows:

PROBLEM P: Find the expression forv(t), 0 6 t 6 T , such that the solution
y(x, t) of

yt − νyxx + yyx + (yyd)x + ydydx − ν(yd)xx = v(t)δ(x − xa), (2.5)

B.C. y(0, t) = 0, y(1, t) = 0, (2.6)

I.C. y(x,0) = y0(x), (2.7)

minimizesJ [y[v], v] given by

J [y[v], v] =
∫ 1

0

∫ T

0
y2(x, t; v(t)) dt dx + ε

2

∫ T

0
v2(t) dt. (2.8)

2.1. COLE–HOPF TRANSFORMATION

The nonlinear term in (2.5) prevents the usage of the adjoint method to find the
optimal control. This can be overcome by using the nonlinear Cole–Hopf trans-
formation [4]to rewrite (2.5)into a linear diffusion type equation with source terms.
Let

y(x, t) = −2ν
φx

φ
= −2ν(ln(φ(x, t))x . (2.9)

Substituting this in (2.5) and integrating the resulting equation with respect tox

gives

φt = νφxx + yd(x)φx + g(x)φ +m(x, t)φ, (2.10)

B.C. φx(0, t) = 0, φx(1, t) = 0, (2.11)

I.C. φ(x,0) = φ0(x), (2.12)

where

g(x) = 1

4ν
y2
d −

1

2
(yd)x,

m(x, t) = − 1

2ν
H(x − xa)v(t)

andH(·) denotes the Heaviside function. Applying the Cole-Hopf transformation
to the performance index, we obtain

J [φ[v], v] = 1

2

∫ 1

0

∫ T

0
(−2ν(ln(φ(x, t))x)

2 dt dx + ε
2

∫ T

0
v2(t) dt. (2.13)
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The transformed performance index, particularly the first integral, is not useful in
obtaining the expression for optimal controlv(t). In the next section, we introduce
the idea of equivalent performance index.

3. Equivalent Performance Index

In this section, we derive a performance index that is simpler in form and that can
be used to compute the optimal cost to control the Burgers’ equation. The core of
this idea is rooted in functional analysis under the guise of equivalent metrics.

3.1. A CLASS OF EQUIVALENT FUNCTIONALS

DEFINITION 1. We define a functionφ∗ to beP -optimal if P [φ] attains an ex-
tremal value atφ∗. In the context of this paper, we consider only the case when
P [φ] attains a minimum value atφ∗. That is

P [φ∗] = min
φ
P [φ]. (3.14)

LEMMA 1. LetH [φ] be a functional of the following form.

H [φ] =
∫ 1

0

∫ T

0
f (φ, φx) dt dx. (3.15)

Then, an extremal ofH [φ] satisfies the Euler-Lagrange equation given by

f − φxfφx = 0. (3.16)

An eloquent discussion of this topic can be found in [1]. The following the-
orem allows the replacement of a complicated performance index with a simpler
performance index which still indicates optimal values if and when they exist.

THEOREM 1. LetJ [φ[v], v] be given by (2.8) and

C[φ[v], v] =
∫ 1

0

∫ T

0
φ2(x, t; v(t)) dt dx + ε

2

∫ T

0
v2(t) dt. (3.17)

Let v∗ be a fixed control function. Then,φ∗ is C-optimal impliesφ∗ is J -optimal
also. That is,

C[φ∗, v∗] = min
φ
C[φ, v∗] H⇒ J [φ∗, v∗] = min

φ
J [φ, v∗] (3.18)

Proof.First, we assume that

C[φ[v], v] =
∫ 1

0

∫ T

0
f (φ, φx) dt dx + ε

2

∫ T

0
v2(t) dt. (3.19)
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We intend to show that the choice of

f (φ, φx) = 1

2
φ2 (3.20)

in (3.19) leads to the inequality

06 δJ

δφ
6 δC

δφ
. (3.21)

and henceC-optimal will imply J -optimal. The proof of the theorem is complete
if we show that the choice off given by (3.20) satisfies (3.21). Using Lemma 1,
(3.21) can be proved if we can find anf (φ, φx) in (3.19) such that

4ν2φ2
x

φ2
6 f − φxfφx (3.22)

Both sides of the inequality results from computing the first functional approxim-
ation of the performance integral. By setting each to 0 individually, we obtain the
Euler–Lagrange equations for the functionalsJ andC. The solutions of the Euler–
Lagrange equations provide the extremal solution of the functionals. Thus, (3.22)
implies

φxfφx − f +
4ν2φ2

x

φ2
≤ 0,

⇐⇒ 1

φx
fφx −

1

φ2
x

f + 4ν2

φ2
≤ 0,

⇐⇒
(

1

φx
f + 4ν2φx

φ2

)
φx

≤ 0,

⇐⇒ 1

φx
f + 4ν2φx

φ2
= G(φ, φx),

whereG(φ, φx) is a decreasing function ofφx . One choice? of such a function is

G(φ, φx) = 4ν2φx

φ2
+ 1

2

φ2

φx
(3.23)

which implies

f (φ, φx) = 1

2
φ2.

This proves the theorem.

? There are infinitely many possible choices ofG(φ, φx) and hencef (φ, φx). We choose the one
that helps compute the optimal control easily.



260 RAM VEDANTHAM

3.2. RE-FORMULATION OF THE OPTIMAL CONTROL PROBLEM

In this subsection, we use the result from the Theorem 1 to re-state an equivalent
optimal control problem. The solution satisfies the IV-BVP (2.10)-(2.12) while
minimizing the performance index functional (2.13).

PROBLEM Q: Find an optimal controlv(t) that minimizes the performance index

C[φ[v], v] = 1

2

∫ 1

0

∫ T

0
φ2(x, t) dt dx + ε

2

∫ T

0
v2(t)dt (3.24)

whereφ(x, t) satisfies

φt = νφxx + yd(x)φx + g(x)φ +m(x, t)φ, (3.25)

B.C. φx(0, t) = 0, φx(1, t) = 0, (3.26)

I.C. φ(x,0) = φ0(x), (3.27)

where

g(x) = 1

4ν
y2
d −

1

2
(yd)x,

m(x, t) = − 1

2ν
H(x − xa)v(t)

4. Optimal Control

In this section, we derive the expression for an optimal control for the redefined
problem (3.24)–(3.27) by using the adjoint problem. In the following subsection,
we prove the existence of a minimum value of the performance indexC[φ[v], v]
defined by (3.24). First, we define a HamiltonianH [x, t;φ,ψ, v] that corresponds
to the performance index given by

H [x, t;φ∗, ψ, v] = −ε
2

∫ T

0
v2 dt +

∫ 1

0

∫ T

0
H(x − xa)φ∗ψv dt dx. (4.28)

We justify this expression for the Hamiltonian by the following argument: If the
performance index can be interpreted as a Lagrangian, then the Hamiltonian can
be obtained by applying the Legendre[5] transform on the Lagrangian.

4.1. EXISTENCE OF THE OPTIMAL CONTROL

THEOREM 2. Let v and v∗ be elements in the space of admissible controls de-
noted byF ad with corresponding dependent state variablesφ andφ∗ respectively
that satisfy Equations (3.25)–(3.27). Also, letψ and ψ∗ be the corresponding
adjoint state variables that satisfy Equations (4.31)–(4.33). Assume thatv∗ satisfies

H [x, t;φ∗, ψ, v∗] = max
v∈Fad

H [x, t;φ,ψ, v], (4.29)
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whereH [x, t;ψ, v] is defined by (4.28). Then

C[φ∗[v∗], v∗] ≤ C[φ[v], v] ∀ v ∈ Fad. (4.30)

Proof.Letψ(x, t) be the adjoint ofφ(x, t) that satisfies

−ψt = νψxx + (g(x)ψ)x + yd(x)ψ + (mψ)− φ, (4.31)

B.C. ψx(0, t) = 0, ψx(1, t) = 0, (4.32)

T.C. ψ(x, T ) = 0. (4.33)

First, we find the implication of the adjoint problem and use it later in the proof.
Let1φ = φ(x, t) − φ∗(x, t) Then,1φ satisfies the equation,

1φt = ν1φxx + g(x)1φx + yd(x)1φ +1(m(x, t)φ), (4.34)

B.C. 1φx(0, t) = 0, 1φx(1, t) = 0, (4.35)

I.C. 1φ(x,0) = 0. (4.36)

Multiplying (4.34) byψ and multiplying (4.31) by1φ and subtracting one from
the other, we obtain

ψ1φt +1φψt = ν[ψ1φxx −1φψxx] + [ψg1φx −1φ(gψ)x] +
+ψ1(mφ)−1φ(mψ)+ φ1φ. (4.37)

Integrating both sides with respectx and t and applying appropriate boundary
conditions, we obtain∫ 1

0
(ψ1φ)

∣∣T
t=0dx =

∫ 1

0

∫ T

0
(ψ1(mφ)−1φ(mψ) dt dx +

+
∫ 1

0

∫ T

0
φ1φ dt dx.

Applying the terminal condition of the adjoint problem, we obtain∫ 1

0

∫ T

0
φ(x, t)1φ(x, t) dt dx = −

∫ 1

0

∫ T

0
(ψ1(mφ)−1φ(mψ)) dt dx.

(4.38)

Equation (4.38) summarizes mathematically the effect of the adjoint problem. We
use this result in the proof of the theorem. Observe that, from (3.24),

C[φ[v], v] = 1

2

∫ 1

0

∫ T

0
φ2(x, t) dt dx + ε

2

∫ T

0
v2(t) dt. (4.39)

We define
1C = C[φ[v], v] − C[φ∗[v∗], v∗].
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The convexity property of a quadratic functionf (φ) = 1
2φ

2 provides the inequality
given by

f (φ)− f (φ∗) > fφ(φ)
∣∣
φ
(φ − φ∗) = φ1φ. (4.40)

Using (4.40), we have

1C >
∫ 1

0

∫ T

0
φ(x, t)1φ(x, t)dt dx + ε

2

∫ T

0
(v2(t)− (v∗(t))2) dt.

Using (4.38), we have

1C > −
∫ 1

0

∫ T

0
[ψ1(mφ)−1φ(mψ)] dt dx + ε

2

∫ T

0
(v2(t)− (v∗(t))2) dt

= −
∫ 1

0

∫ T

0
[ψφ∗m− ψφ∗m∗] dt dx + ε

2

∫ T

0
v2(t)− (v∗(t))2 dt

=
{∫ 1

0

∫ T

0
H(x − xa)ψφ∗v∗ dt dx − ε2

∫ T

0
(v∗)2 dt

}
−
{∫ 1

0

∫ T

0
H(x − xa)ψφ∗v dt dx − ε2

∫ T

0
v2 dt

}
. (4.41)

Using (4.29), we have

C[φ[v], v] ≥ C[φ[v∗], v∗] ∀ v ∈ Fad.

This proves the existence of a minimum value of the performance index and also
helps find the expression for the optimal controlv∗(t). Using the same observations
made earlier, we will now derive an expression for the optimal control.

4.2. AN EXPRESSION FOR THE OPTIMALCONTROL

In this subsection, we use elementary calculus to derive an expression forv∗(t).
From (4.29), we know that the Hamiltonian achieves its maximum atv = v∗. This
implies that the variational derivative of the Hamiltonian with respect tov should
equal zero. That is,

δH

δv
= 0 ⇒ −εv∗(t)+

∫ 1

0
H(x − xa)φψ dx = 0

⇒ v∗(t) = 1

ε

∫ 1

0
H(x − xa)φψ dx (4.42)

Using this expression for the Hamiltonian, we generated a sample solution for the
coupled adjoint system of equations. We assumed thatν = 0.5 and ε= 0.05 and
the fourth order Runge–Kutta method coupled with the shooting scheme in solving
the set of nonlinear coupled equations (3.25) and (4.31) with their appropriate
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initial and terminal condition. The figure below illustrates the effectiveness of the
control function.

5. Conclusion

In this paper, we have devised a method to compute an equivalent performance
index which indicates extremal values of the given performance index. This has
enabled us to use the adjoint problem to derive a maximum principle for a non-
linear optimal control problem that has been solved, hither to, using either numer-
ical schemes or linearization. The idea of equivalent performance indices can be
extended even to linear optimal control problems with complicated performance
indices.
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